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The equation of hydrostatic equilibrium and Clairaut I s  equation are 

integrated numerically t o  obtain mathematical models fo r  sol id  bodies of 

planetary dbensions.  

materials within a solar m i x t u r e  are  estimated and mass-radius curves 

plotted f o r  model planets composed of these materials. Sets of self- 

consistent models f o r  Uranus and Neptune are computed upon the  basis of 

Equations of state a t  0' K f o r  the more abundant 

a stated se t  of assumptions and the properties of these 

calculated and compared w i t h  available observational data 

Introduction . ti,., 

The cornposition and structure of the outer planets have been the 

subjects of numerous investigations since the calculation of a high 

pressure equation of state for  metallic hydrogen by Kronig, De Boer, 

Korringa [1946]. W i l d t  [I9381 ha6 previously indicated that a metall ic 

phase of hydrogen should be of major importance regarding the composition 

of Jupiter and Saturn and tha t  t h k s  equation of s t a t e  presented the 

poss ib i l i t y  of a quantitative approach t o  the problem. 

matical  models have since been constructed f o r  Jupi ter  and Saturn by 

various authors including DeMarcus [19511 Fesenkov Masevich [195119 

and Ramseg [1951]. 

Detailed mathe- 

DeMarcus 119581, i n  an exhaustive treatment of t h i s  
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' Y  
? I 

-.t 2 I 

hydrogen i n  the metall ic phase. He obtains values of 0.78 and 0.63 for - 

. .---- 
constructed nonrotating models of t h i s  mater ia l .  Ramsex [1963 J has 

obtained an equation of s t a t e  f o r  a cosmic mixture of CH4, H20, NEI3, and 

Ne and has calculated four models for nonrotating masses composed of F ;, 
this mixture. / 

r. I. 

l i t e r a t u r e  regarding the composition of Jupi ter  and Saturn depends 

The re la t ive ly  good agreement which has been reached wi th in  the 
i 
6 
i 

primarily upon the singular properties of hydrogen and the f a c t  t h a t  

hydrogen i s  the chief constituent of these planets. 

culat ions by DeMarcus 

Quantitative ca l -  

Reynolds E19621 have shown t h a t  the maximum 
8. . 

L .  

weight f rac t ion  of hydrogen present within Uranus is about 0.23 and within 
t' b 

\ 
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Neptune about 0.14. The predominance of nonhydrogen material within -, 

Uranus and Neptune, as w e l l  as the re la t ive  lack of observational data, 

precludes the pqss ib i l i ty  of obtaining the type of well-defined solution 

i t o  the compositional problem tha t  has been developed f o r  Jupi te r  and i 

Saturn. Further assumptions are  found t o  be necessary i n  the case of 1 

Uranus and Neptune. /’ 

It is the purpose of t h i s  investigation t o  develop, on the basis  of 

a def in i te  set of assumptions, a group of models of Uranus and Neptune 

which are consistent with the presently available physical data, and are 

compatible with current ideas regarding the development of the solar 

emphasized that ,  although the range of possible models may be r e s t r i c t ed  

and bounds obtained upon the amounts sf cer tain constituents, the  current 
4’ 

data a re  inadequate f o r .  the establishment of a unique model. 

Primordial Composition and Subsequent Development 

of Uranus and Neptune 
--- 

i 
L 

The assumption is  made here tha t  Uranus and Neptune were formed from 

a primitive solar  nebula, having a so-called solar  composition and which 

existed i n  low temperature chemical equilibrium. This assumption follows 

from the ’nypothesis of planetary fqrmatiori by means of the accretion of 

mater ia l  from a cold primitive nebhla as developed by Spitzer, Urey, 

Hoyle, .and others. 

were taken from Aller [ 19611, with the exception of helium, whose abundance 

was modified s l igh t ly  t o  conform with a 1O:l hydrogen t o  helium r a t i o  by 

_ -  

The re la t ive  abundances of the consti tuent elements 



~~ ~~ 

' , . r  . 
4 

number. Table 2 lists the relat ive abundances ,2f the more abundant 

elements. The t o t a l  mass 

t o  only 1 per cent of the 

so la r  mixture and w i l l  be 

Chemical equilibrium 

of a l l  the remaining elements combined amounts 

nonhydrogen-helium-neon portion of A l l e r ' s  

neglected here. 

of t h i s  modified Aller mixture a t  the low 
Table 2 < 

temperatures characterizing the outer regions of the solar  system w i l l  

r e su l t  i n  the s i l i con  and magnesium being present i n  the form of oxides. 

The remaining oxygen as w e l l  as t h e  carbon, nitrogen, and sulfur  w i l l  

exist i n  the form of hydrides. Iron and nickel a re  considered t o  remain 

i n  the unconibined s t a t e .  

and cmipomdij are  gi-vzn 3y 3 b l e  3. 

The relat ive proportions of these elements 

Table 3 < The temperature of a small, rapidly rotat ing pa r t i c l e  i n  equilibrium 
I' 

with the Sun and i n  a nearly ci rcular  so la r  o rb i t  may be expressed by 

the relation 

where I 
-J 

ef fec t ive  temperature of the Sun 

% radius of the Sun 

a semimajor axis of the pa r t i c l e  o r b i t  

A albedo of pa r t i c l e  

If we take the present temperature and radius of the Sun as representative 

values which should not have changed dras t ica l ly  over the period of plane- 
- 

t a r y  formation, we may obtain par t ic le  temperatures a t  the o r b i t a l  d i s -  

tances of Uranus and Neptune. For par t ic les  which are blackbodies 
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(albedo = 0) the temperature is 64O K a t  Uranus and 41' K at  Neptune. 

An albedo of 50 per cent w i l l  lower these values t o  44' K and 43' K, 

respectively. A comparison of these figures with the  data .of  Table 4 

shows tha t  the abundant materials which have a s ignif icant  vapor pressure 

a t  room temperature a re  divided sharply into two groups on the basis 

of t h e i r  melting points. 
Table 4 < '  Hydrogen, helium, and neon remain gaseous a t  these temperatures 

while the remaining materials l i s t e d  i n  Table 4 w i l l  e x i s t  predominantly 

i n  the so l id  phase. For purposes of calculation the hydrogen, helium, 

and neon are  grouped together, i n  the proportions given by Table 3 ,  t o  

form a mixture labeled HHeNe. 

i n to  two groups. 

t ions,  t o  form a mixture designated here as Ice. This includes H20,  

The nonvolatile materra16 a re  separated 

The bydrides and argon are  added, i n  cosmic propor- 
4' 

CH4, "3, Has, and Ar. , The same procedure i s  employed f o r  the oxides 

of s i l i con  and magnesium and for iron-nickel and t h i s  mixture is  cal led 

Rock. >---..-- 

J 

I 
Calculation of Models 

Two approxhations may be made for large sol id  bodies which great ly  

simplify the calculation of mathematical modeLs. Firs t ,  the s t ruc tura l  

s t rength of .the material  comprising such bodies is  great ly  exceeded by 

the e f f ec t  of the in te rna l  pressures a t  a11 depths below a negligibly small 

distance from the surface; hence, the equation of hydrostatic equilibrium 

may be used. 

charac te r i s t ic  of the outer.planets and having cent ra l  temperatures of 

Secondly, f o r  solid bodies having the masses and dimensions 
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the  order of a f e w  thousand degrees, the effects  of temperature w i l l  be 

completely overridden by pressure effects,  and the temperature of the 

constituent materials may be considered t o  be effect ively 0' K. 

models presented i n  t h i s  paper are computed on the basis  of Oo K equa- 

The 

tions of state and compared d i rec t ly  to  the planets without allowance 

f o r  temperature cqrrection. 

in te rna l  temperatures do not exceed a few thousand degrees but, a t  

present, the evidence is not conclusive enough t o  ru le  out completely 

the poss ib i l i t y  of temperature effects  large enough t o  require 

There a re  several indications t h a t  the 

/ 

/ 

consideration. 

If the pressure-density re la t ion f o r  a 0' K gravi ta t ing f l u i d  is 

known, the  equation of hydrostatic equilibrium, 

where 

P pressure 

P density 
I 

S mean radius 

G gravi ta t ional  constant 

W angular velocity 

which is  given here io second order i n  the angular velocity, may be 

integrated from the center t o  the surface and the pressure and density 

dis t r ibut ions computed as a function o f  the mean radius within the m o d e l .  

' 

For a rotat ing planet with a known density dis t r ibut ion the 

e l l i p t i c i t y  may be calculated. 

angular veloci t ies  of Uranus and Neptune, the f i r s t -order  equation 

For bodies having the dimensionk and 



derived by Clairaut provides sufficient accuracy. 

where 

E e l l i p t i c i t y  = 1 equatorial  radius - polar radius) 

(equatorial  radius ) 

m mass contained within sphere of radius s 

This system of equations w a s  programmed for  solution by d i g i t a l  

. computer and the numerical integration carried out by means of a 

variat ion of the -Kutta technique. 

Equations of' State  

I' Before the parameters of a model may be calculated, the equation 

of state f o r  each constituent must be determir-ed. Equations of state 

f o r  'cold' (0' K) hydrogen and helium are taken from DeMarcus [1959]. 

The equation o f  state of the HHeNe mixture may be exgressed (sesuming 

t h a t  the p a r t i a l  molar volumes of hydrogen, helium, and neon are 

addi t ive)  by the re la t ion  

r 

- 
1 

w w  w H He Ne + - + -  
%eNe 'H 'He 'Ne 

- -  - 1 

7 

For the proportions given i n  Table 3 the weight fractions are: 

w - O.7lO5, wHe = 0.2822, and wNe = 0.0073. Neon contributes l e s s  than 

1 per cent t o  the density of the mixture and, hence, may be neglected in 

the calculation of the equation of s t a t e .  

H -  

Since more than half of the nonvolatile portion of Aller's-s'olar 

m i x t u r e  is k0, the  equation of s t a t e  of H20 i s  of prime in te res t .  



Sta t i c  pressure' u t a  are available from the work of Bridgman [ 1942 I 
and a compilation of e a r l i e r  work by Dorsey [i$40] t o  about 50 kb. 

Walsh - - and -* Rice [1957] have published shock-wave data f o r  water t o  450 kb 

along a Hugoniot. 

- and Petrunin [1961] give a few pressure-density data points as high as 

800 kb from shock-wave measurements. 

Al'tshuler, Bakanova, and Trmin 119581 and Al'tshuler 

The shock-wave data  are for H 2 0  

i n  the l iquid phase and, f o r  the high pressures, a t  temperatures of the  

order of several  thousand degrees Kelvin. 

calculation outlined here these data mufit be corrected t o  correspond with 

For the program of model 

the so l id  phase a t  0" K. 

Rice and Waish E19571 have calculated isotherms at  several  temperatures --- 
from t h e i r  Hugoniot data  t o  250 kb. 

mined the melting p rve  of ice  V I 1  t o  200 kb. This curve was extrap- 

olated t o  250 kb and the  density of liquid water obtained, along t h i s  

Pistorius,  e t  al.  [I9631 have deter-  -- 
I' 

fusion curve, by interpolation from the tables of Rice and Walsh. The 

density difference between liquid H20 and i c e  V I 1  is known from Br-Mgman's 

data t o  almost, 40 kb. This density difference is decreasing and, on 

l i nea r  extrapolation, would become vanisliingly small i n  the v ic in i ty  of 

110 kb. The pressure-density relation for sol id  H20 can thus be estimated 

along the  melting curve by correcting for the e f fec t  of t h i s  phase change. 

This procedure gives the equation of s t a t e  of sol id  H20 along the fusion 

curve t o  250 kb. The increase i n  uncertainty involved i n  extrapolating 

these 'corrections t o  higher pressures is p a r t i a l l y  counterbalanced by the 
._ 

f a c t  t h a t  the  density corrections t o  the Hugoniot data become smaller a t  

the higher pressures. These corrections were applied t o  the experimental 



9 

(The density differences due t o  thermal data, giving values t o  800 kb. 

expansion of the so l id  from 0' K t o  the  fusion curve a re  small and may 

be neglected.) .This temperature corrected curve f o r  the so l id  was joined 

smoothly t o  a quantum mechanical equation of state f o r  &O which should 

be val id  a t  extremely high pressures. The interpolation i s  indicated 

i n  Figure 1. "he high-pressure equation of s t a t e  w a s  constructed by a + I  

method suggested by Knopoff [ 19581. 

s t a t e  w a s  employed for  oxygen, calculated by the procedure of Metropolis 

-- and Reitz [1951], and the DeMarcus [1959] metallic'equation of s t a t e  w a s  

used f o r  hydrogen. The two elements were mixed with a 2:l number ra t io ,  

liidrogen t o  axygen, mder  the assuqtim tha t  the p a r t i a l  mlar vnlumes 

are additive. 

the poss ib i i i t y  of phase changes in  t h e  region of interpolation. 

[1963] has proposed a large phase change for HzO as the factor  which 

The Thomas -Ferni-Dirac equation of 

~ 

/ 

- This process of a smooth interpolation does not allow f o r  

Ramsey 

.1' 

determines the differ ing mean densities of Uranus and Neptune. A t  the 

. present time, however, no evidence exists,  e i ther  experimental or--.-- 

theoret ical ,  t o  support t h i s  hypothesis. 

With the pressure-density relation f o r  a material known, the equation 

of hydrostatic equilibrium may be integrated for a given cent ra l  pressure 

and the mass and radius of the resulting model planet determined. This 

computation.was made f o r  various central  pressures and a set of nonrotat'- 

ing models of H& These models a re  represented on a mass-radius p l o t  

(Figure 2),  along with similar cuives f o r  hydrogen and helium. Models 

of so l id  'H20 f o r  Moon-sized objects with cent ra l  pressures below 50 kb 

were constructed by H u a u x  [1951]. 

< Fig. 2 
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"he equations of s t a t e  for CH,, "3, and H2S were calculated by 

means of similar procedures. 

compounds a re  l e s s  w e l l  determined than that for H20, however, since 

shock-wave data are not available i n  the intermediate pressure range. 

Low-temperature data are available from the work of Stewart [1959, 19601 

The pressure-density re la t ions f o r  these 

f 
i 
i' 
i 

up t o  20 kb. 

Murnaghan-Birch equation of f i n i t e  s t ra in .  

These data were extrapolated t o  100 kb by means of the 

High-pressure equations of 

i 
I state were constructed by combining the Thomas-Fermi-Dirac equations of 

state f o r  carbon, nitrogen, and sulfur with the equation of s t a t e  f o r  

0' K hydrogen by means of the same process as outlined f o r  H20. 

interpolations were then performed between the low pressure data and 

the high pressure equations of s t a t e .  

be estimated i n  a l i k e  manner. 

a r e  given i n  Table 5. 

Smooth 

The equation of state of argon can 

0' K equations of state f o r  H20, CH,, and 

Table 5 
Only 8 per cent of the t o t a l  mass of the Ice mixture is  "3 while < 

H2S and A r  are even less abundant. The properties of the model planets 

are, consequently, not extremely sensit ive t o  the equations of state of 

these substances. Fortunately the greatest amount of experimental data  

is available' f o r  H20, which i s  a l so  the most abundant material. 

-__--- 

I F- 

For methane, hqwever, 6, more d i f f i cu l t  pro5lem exis t s .  No shock- 

wave data  e x i s t  fo r  intermediate pressure ranges and CH, forms more than 

one-fourth of the Ice mixture. The interpolation procedure outlined 

here is preferred, 

rigorous 'appearing 

extremely insecure 

avai lable  high and 

i n  sp i t e  of the uncertainties involved, over more \ 
t 
jl 
il 

equations which, i n  addition t o  being based upon 

theoret ical  foundations, do not agree with the 

low pressure information. 



. 

i 

i 

! 
i 
I 

t 

ll t 

The equation of s t a t e  of Ice  is ther. expressed by the re la t ion  
r 
i 

t 

using the  densit ies given by the individual equations of state and the 

weight fractions quoted i n  Table 6. 
t 
i 

Table 6 
'6 [19491 data f o r  PIgO t o  :G l ib w a s  extrapolated t o  100 kb Br  id- 1 

by means of the Murnaghan-Birch equatior, and t i e  resul t ing cukve was joined 

smoothly a t  high pressures t o  a theoretical  curve derived by 

Trubitsyn [ 19581 

S ta t i c  data f o r  crystal l ine quartz t o  100 kb are  available from 

Bsi&qnan [I9481 ; and Wackerle [1962] has published shock-wave data t o  

700 kb. 

pressure Thomas-Fermi-Dirac relations f o r  Si02 and MgO are very similar 

As w a s  demonstrated by Khopoff and Uffen [19.541, the high 
.r 

since the mean atomic weights are almost identical .  Hence the SiO, 

experimental data were extrapolated t o  join the MgO equation of state 

a t  high pressures. 

taken from the worK of Al'tshuler, Bakanova, and - 'lkunin [1962] who 

obtained shock-wave data t o  9 Mb. 

and the Thomas-Fermi-Dirac equations of s t a t e  permits extension of the 

The equations of s t a t e  for iron and nickel were 

Interpolation between these equations 

pressure-density re la t ion  t o  higher pressures. 

The equation of state f o r  Rock is  then given by 

w 1 wsio2 wmo + Fe-Ni 

'Rock 'Si02 %go 'Fe-Ni 
_. - = - + -  

where the  densi t ies  a re  given by the individual equations of state and 

the weight fractions are 0.599 f o r  SiO2, 0.313 f o r  Mg09 and 0.082 f o r  

1 



Equations of s t a t e  f o r  HHeNe, Ice,  and Rock are tabulated i n  

Table 7 along with a mixture, in  solar proportions, of Ice  and Rock which 

is labeled Homall. 
Table 7 < The approximate character of these equations of state is readi ly  

seen from the extrapolations and interpolations which must be performed 

t o  obtain them. These equations do provide reasonable and consistent 

estimates of the pressure-density relations and permit the calculation 

of models which approximate Uranus and Neptune. 

The equations of s t a t e  for  each of the mixtures tabulated i n  

Table 7 were used t o  p lo t  mass-radius curves (Figure 3)  f o r  nonrotating 

L' 

bodies. 1 

Nodel Planets 

Fig., 3 < 
As may be seen from Figure 3, the actual  compositions of Uranus 

and Neptune must l i e  somewhere between tha t  of a pure HHeNe mixture 

and t h a t  of a planet composed ent i re ly  of nonvolatile materials. . 

Model planets,, having the observational values of the masses and 

r a d i i  of Uranus and Neptune, may be constructed from the previously 

defined mixtures by a straightforward., but extremely nonlinear, process 

of mixing the various materials i n  the proper proportions. 

Since.the gravi ta t ionai  different ia t ion of l i g h t  and heavy materials 

may produce d i f fe ren t  degrees of internal  condensation within a planet, 
. -  

models were constructed t o  investigate the consequences of such a 

gravi ta t iona l  s e t t l i n g  process .. 
stages of t h i s  process were calculated and t h e i r  density dis t r ibut ions 

Models representing three d i f fe ren t  



are displayel i n  Figures 4 an1 5 .  ‘BE densit;? i s  plotted &8 a function 

+e 4,5 
of s/R where R is the mean raaius of t he  pianet. 

The first is  a completely homogeneous model (Model I) having 

Aller’s proportions with respect t o  the nonvolatile materials and with 

suff ic ient  HHeNe mixture added t o  provide the  ;proper mass and radius. 

The second o r  two-shelled model (Model 11) consists of a core of the 

Homall m h t u r e  with an outer layer  of HHeNe. 

model (Model 111) ha6 an inner core of Rock, a mantle of Ice, and an 

outer layer  of HHeNe. 

!The f i n a l  o r  three-shelled 

The moment of iner t ia ,  the e l l i p t i c i t y ,  and the 

pressure dis t r ibut ions were computed f o r  sets of these models corre- 

sponding t o  Uranus and Neptune. Certain parameters calculated from these 

models a re  l i s t e d  i n  Table 8. 
Table 8 

Apart from the masses and radii, which are  constrained t o  f i t  the  < N 

observed values, the relevant observational data a re  limited t o  the 

- constant J (the visual  e l l i p t i c i t i e s  a re  not re l iab le)  which is a 

measure of the departure of the external gravi ta t ional  po ten t ia l  of the 

planet  from spherical  symmetry. The constant J appears i n  the equation 

1_ 

I 

*I V = r [l - $ J ($) P ~ ( C O S  rp) t: 

where - , 

V external gravi ta t ional  potent ia l  

G gravi ta t ional  constant ; 

M ’  

a 

mass of the planet 

equatorial  radius 

r distance from the center of mass of the planet 

cp colati tude 

P2 Legendre polynomial of order 2 
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The constant J may be evaluated from e study of s a t e l l i t e  motions and 

is available f o r  Neptune, although not f o r  Uranus. The values of J 

f o r  the models. may be obtained from the re la t ion  ./ 
p .  

where 

i n  Table 8. 

by Brouwer - and Clemence [lsl]. 

value of J 

fi i s  mean density. These values are Tabulated f o r  Neptune and Uranus 

The observed value for Neptune is  given as 0.0074 5 O.oocT( 

The uncertainty i n  the observational 

rules  out the possibi l i ty  of obtaining a unique solution, 

even under the r e s t r i c t ive  assumptions which have been made. 

of 3 f o r  Model XI, however, i s  wi th in  t h?  quoted mzrgin of e r ro r  ar?d 

The value 
. I  

is  therefore consistent with the present data. 

f o r  Neptune is  tabulated i n  Table 9. Although the v a h e  of 3 f o r  

The two-shelled model 
c’ 

Uranus is not currently available, the two-shelled model f o r  Uranus is 

presented i n  Table 9 fo r  purposes of comparison since the essent ia l  

s imi la r i ty  i n  mass and radius would suggest a similar in te rna l  denssy  

d is t r ibu t ion  f o r  Uranus and Neptune, a t  l ea s t  as a first  approximation. 
Table 9 < 

Models of Uranus and Neptune have been constructed on the basis  of 

the following se t s  of principal assumptions and the resul t ing models 

compared with the available physical data. 

. 

.- 

General assumptions involved i n  the calculation of a model f o r  a 

giant  planet  are: 

(a) The equation of hydrostatic equilibrium prevails throughout 

the planet. 



1' 

from the  two s h e l l  models shows tha t  the fract ion of HHeNe retained by 

Uranus is  2.7 t imessthe fract ion retained by Neptune. The amounts of 

hydrogen present, within the two-shell Neptme xodel, of some 15 per  cent 

and, within the range of Uranus models, of 18 t o  22 per  cent agree qui te  

w e l l  with previous estimates. 

preferred f o r  Neptune, Model 11, indicates a moderate degree of internal 

condensation w i t h  the formation of a large re la t ive ly  homogeneous core. 

The i n t e r n a l  density dis t r ibut ion 

15 

(b) The observed physical constants (as l isted i n  Table 1) are 

correct.  

( c )  The dFnsities of the materials present within the planets are 

accurately represented by the given equations of state. 

(d)  The p a r t i a l  molar volumes of those materials a re  additive. 

Additional assumptions which were required t o  permit the calculation 

of m o d e l s  of Uranus and Neptune are: 

(a)  These planets were formed from a primitive so l a r  nebula, i n  law- 

temperature chemical equilibrium, whose re la t ive  molecular 

abundances are given by the modified A l l e r  mixture of Table 3 .  

(3) Differentiation of the plai ie taq-  Eatei- id  freiii the p r h f t i v e  

nebula proceeds only through loss of HHeNe. 

The weight fractions of the constituent materials were calculated 

f o r  Models I, 11, and I11 of both Uranus and Neptune and the values f o r  

cer ta in  constituents l i s t e d  i n  Tabie io. 
"able 10 

The difference i n  mean deneity of' the  two planets is, on the -baais < 
of the above assumptions, primarily dependent upon the re la t ive  amounts 

of HHeNe retained by the two bodies. A comparison of values obtained 



It is concluded that mathematicalnodels can be constructed for / 

Uranus and Neptune, on the basis of the stated set of assumptions, which 

are consistent with.the presently available information regarding these 

planets. The moacle obtained f o r  both planets are composed prilnarlly of 

the Ice mixture with approximately one-half of their mass composed of H20. 
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TABLF, 1.- Physical Parameters of the Giant Planets 

Mass, Radius, Mean density, Period 
. ( M O * ~  gm) ( n o 8  4 (gm/c# 1 Planet 

Jupiter 1902 69 89 1.35 9%2" 

Saturn 569 4 57.33 0 7 1  10h24. 5m 

Uranus 86.63 2.37 1 35* lOh4grn 

Neptune 102.7 2.23 2.21 l>h'i8m 

Sources: Masses and r a d i i  of Jupiter and Saturn, R. Wildt 

[ 19611 ; Period of Uranus, C. Allen [ 19631 ; a l l  other 

data, D. Brouwer and G. Clemence [ 19611 . 



TABU 2.- Elemental Abundsnces According to Aller [ 19611 

I 

> 

Relative abundance A t a n i c  Relative abundance Element 6 

'- by number weight by ma66 

H lo00 

He* LOO 

1 .OS8 1008 

4.003 400 

0 .  , 891 16 .oo 14.3 . 

Ne . .501 20 18 10.1 

C 398 12 . CL 4.78 

N .112 i l i  .O1 1.57 

si .0316 28.09 .888 ' 

Mg . 0251 24 4 2  .610 

S ,0223 32 .or/ 715 

Ar . 00 759 39 9lk 303 

Fe 000372 52 I )  e> .208 

Ni .00089 58 69 052 
~~~~ ~~~~~ 

*H/He number ratio of 10/1 employed to obta in  He abundance.c""'-' 
I 
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L’ 

TABLF: 3 .- Relative Abundances of Modified A l l e r  Mixture, 

Element or Relative a.bundance 
compound by miss 

H looh 
i. 

He 400 

Ne 

H20 

(334 

“3 

H2S 

Ar 

’ Si02 

10.1 

34.3 

6.39 

1.91 

760 

303 

1.90 

Mgo 1.01 

Fe + N i  .260 

TABLE 4.- Melting Points f o r  Relatively Volatile Materials a t  Low Pressures, 

Element o r  Melting point, . -*a- 

compound ( OK) 
I He Liquid at  0’ K 

H 14.1 

Ne 24.5 

A 84 

cH4 89 
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TABIJ3 5.- Estimated Equations of S t a t e  (0' K) 

H20 cH4 "3 
Pressure ( ~ b )  

Dehsity (gm/cm3) Density ( gm/cm3) Density (gm/c$) 

0 .o 0.917 0 507 0 . 815 
.025 

*05 

.lo 

50 

1.0 

1 53* 

1.63 

1.75 

2.50 

2.87 

.760 

,863 

1.01 

1*34 

1.88 

1.05 

.lag 

1.36 

2.06 

2.50 

2 .o . 3.33 2.32 2 .'99 

3 .o 

L' 4.0 

3 m68 

3 .99 

,z .66 

2.92 

3 *32 

3 e58 

6 .o 4.50 3.34 4.01 

8.0 4.98 3 70 4.34 

10 .O 5.44 4.50 4.70 

12 .o 
. _ 1 _  

5.89 4.37 5.04 

15 .o ' 6.51 . 4.80 5.55 
I 

20 .o 7.24 5 .  '+3 6.27 
*Several phase changes beiow 0.025 Mb, 

, 
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TABLl3 6 .- Weight Fractions of i c e  Constituents 

c’ 

Weight 
f ract ion Constituent 

0.605 

.270 

. 080 

__/ 

Ar ,013 

TABLE 7 .- Estimated Equations of S ta te  (0’ K) 

HHeNe Ice  Rock Homall 
Density, Density, Density, Density, 
(grn/csI ( g d c f l )  (gm/c* I (gm/c* 1. 

Pressure, 

0.0 0.105 

.O25 .258 

a 05 

9 10 

050 

1.0 

1.9 

1.9 

’2.0 

3 e o  

4 00 

, 6eG 

8.0 

1000 

12 e o  

15 e o  

20 .O 

0 750 

1.17 

1.28 

* 

1.44 

2.12 

2.50 

2.94 

2.94 

2.97 

3 *33 

3 063 

b.11 

<4 e 54 

4.96 

5 036 

5.91 
6.62 

3 -03 

3.16 

3.24 

3 038 * 
4.60 

5.15 

5.93 

3.93 

6 .oi 

6.69 

7.27’ 

8.20 

8.99 
9-78 
10.5 

11.5 

12.8 

0 e 828 * 
1.27 

1.39 

1.55 

2.28 
* 

2.68 

3-14 

3 014 

3.18 

30% 

3.87 

4.39 - 

4,84 

5.29 
5071 

6.28 
7.04 

! *Low pressure phase transit ions.  
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TABU 8.- Physical Parameters Calculated From Models 

Central Surface Moment of 
Planet Mddel,, pressure ellipticity inertia, J 

(a048 g m / C S )  
~- -~ ~ 

Neptune I 5.51 0.0196 17.3 0 . 0099 

I1 7.45 .0165 14.8 .0068 

I11 13 038 90135 13 *9 . .0058 

Uranus I 3 013 0584 16.4 .0283 

I1 5.90 00439 12.1 .0138 

I11 10.28 -0423 11.5 .0122, 

. -  

I 

! 



26 
TABLE 9.- Model I1 f o r  Uranus m d  Neptune 

Uranus Neptune 

Pressure (a) Density (gm/cm3) Pressure (Mb) Density (gm/cm3) 8 /R 

0 ,  5 0 9 0  4.36 7.45 ' 4.72 

005 5.87 4.35 7.40 4.70 

.lo 5.76 4.32 7.28 4.67 

15 5.57 4.27 -I. 10 

.20 5.33 

.25 ,5.02 

4.22 6.86 

4.15 6.54 

30 4.63 4.06 6.18 
E; 71 .35 4.23 3.94 1 . l - L  ' 

. 40 3.78 3.81 j e 2 3  
c' 

@ 45 3.28 3.66 i .69 

4.64 

4.58 

4.51 

4.42 . 

4.31 . 

4.19 

4.04 

* 50 

55 

e60 

2.61 3.48 

2.29 3.29 

1.76 ' 3.07 

3 .89 

3.72 

3 @ 5 L  

.65 1.23 2.82 2.37 3 *32 

70 776 2.53 1.80 3 .09 
773 .207 1.83 --- --- 

0 773 0207 e 413 _-- 5-0 

0 8 0  . a68 0390 e 7 5 2  - 2.32 

0 85 ' ,109 

. . 883' --- 
0 327 

-. 109 
2.05 

1.58 

. log e 351 e 883 --- --- 
*90 9061 .310 .083 9334 

* 95 e023 *255 0033 0 273 
1 .oo 0 . 105 0 105 
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TABLE 10.- Chemical Co;qxsiti.rri of Models 

IVeptune I 0.807 0.108 0.083 0.480 0.186 

I1 .848 ,114 ,038 e513 e 1 5 9  

I11 .848 .iii .e38 e 5 1 3  . 0159 

Uranus 

I 

i 
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Figure T i t l e s  

Fig. 1.- Estimated equation of state  f o r  H20. 

Fig. 2.- Mass vs. radius for nonrotating Oo K bodies. 

Fig. 3. -  Mass vs. radius for nonrotating Oo K bodies. 

Fig. 4.  - Density dis t r ibut ions f o r  mode Is of Uranus. 

F i g .  5 .- Density dis t r ibut ions for models of Neptune. 
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